
The Web API action method can have following return types.

1. Void

2. Primitive type or Complex type

3. HttpResponseMessage

4. IHttpActionResult

Void

It's not necessary that all action methods must return something. It can have void

return type.

For example, consider the following Delete action method that just deletes the

student from the data source and returns nothing.

Example: Void Return Type

public class StudentController : ApiController

{

 public void Delete(int id)

 {

 DeleteStudentFromDB(id);

 }

}

Example: Primitive or Complex Return Type

public class Student

{

 public int Id { get; set; }

 public string Name { get; set; }

}

public class StudentController : ApiController

{

 public int GetId(string name)

 {

 int id = GetStudentId(name);

 return id;

 }

 public Student GetStudent(int id)

 {

 var student = GetStudentFromDB(id);

 return student;

 }
}

Example: Return HttpResponseMessage

public HttpResponseMessage Get(int id)

{

 Student stud = GetStudentFromDB(id);

 if (stud == null) {

 return Request.CreateResponse(HttpStatusCode.NotFound, id);

 }

 return Request.CreateResponse(HttpStatusCode.OK, stud);

}

In the above action method, if there is no student with specified id in the DB then it will

return HTTP 404 Not Found status code, otherwise it will return 200 OK status with student

data.

IHttpActionResult

The IHttpActionResult was introduced in Web API 2 (.NET 4.5). An action method in Web API

2 can return an implementation of IHttpActionResult class which is more or less similar to

ActionResult class in ASP.NET MVC.

You can create your own class that implements IHttpActionResult or use various methods

of ApiController class that returns an object that implement the IHttpActionResult.

Example: Return IHttpActionResult Type using Ok() and NotFound() Methods

public IHttpActionResult Get(int id)

{

 Student stud = GetStudentFromDB(id);

 if (stud == null)

 {

 return NotFound();

 }

 return Ok(stud);

}

In the above example, if student with specified id does not exists in the database then it will

return response with the status code 404 otherwise it sends student data with status code

200 as a response. As you can see, we don't have to write much code because NotFound()

and Ok() method does it all for us.

The following table lists all the methods of ApiController class that returns an object of a

class that implements IHttpActionResult interface.

If you need to make the controller async then you have to
wrap the result in a task and use await, in the same way
that you make any other method asynchronous.
Remember that if you are doing async, you should use it
all the way down and not synchronously block on an
async method. We have async controllers for this
purpose:

public async Task<IHttpActionResult> GetAsync(int id)

{

 var product = await dbContext.Products.GetAsync(id);

 if (product == null)

 return NotFound();

 return Ok(product);

}

	Void
	IHttpActionResult

